
TWMS J. Pure Appl. Math., V.7, N.1, 2016, pp.76-87

ON THE SPACES OF NÖRLUND NULL AND NÖRLUND CONVERGENT
SEQUENCES
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Abstract. In this article, the sequence spaces c0(N
t) and c(N t) are introduced as the domain

of Nörlund mean N t in the spaces c0 and c of null and convergent sequences which are isomorphic

to the spaces c0 and c, respectively, and some inclusion relations are given. Additionally,

Schauder basis for the spaces c0(N
t) and c(N t) are constructed and their alpha-, beta- and

gamma-duals are computed. Finally, the classes (c(N t) : `∞), (c(N t) : c) and (c(N t) : c0) of

matrix transformations are characterized.
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1. Introduction

We denote the space of all complex valued sequences by ω. Each vector subspace of ω is
called as a sequence space, as well. The spaces of all bounded, convergent and null sequences are
denoted by `∞, c and c0, respectively. By φ, we mean the space of all finitely non-zero sequences.
A sequence space µ is called an FK-space if it is a complete linear metric space with continuous
coordinates pn : µ → C with pn(x) = xn for all x = (xn) ∈ µ and every n ∈ N, where C denotes
the complex field and N = {0, 1, 2, . . .}. A normed FK-spaces is called a BK-space, that is,
a BK-space is a Banach space with continuous coordinates, [13, pp. 272-273]. The sequence
spaces `∞, c and c0 are BK-spaces with the usual sup-norm defined by ‖x‖∞ = supk∈N |xk|. By
`1, `p, cs, cs0 and bs, we denote the spaces of all absolutely convergent, p-absolutely convergent,
convergent, convergent to zero and bounded series, respectively; where 1 < p < ∞.

The alpha-dual λα, beta-dual λβ and gamma-dual λγ of a sequence space λ are defined by

λα := {x = (xk) ∈ ω : xy = (xkyk) ∈ `1 for all y = (yk) ∈ λ} ,

λβ := {x = (xk) ∈ ω : xy = (xkyk) ∈ cs for all y = (yk) ∈ λ} ,

λγ := {x = (xk) ∈ ω : xy = (xkyk) ∈ bs for all y = (yk) ∈ λ} .

Let λ, µ be any two sequence spaces and A = (ank) be an infinite matrix of complex numbers
ank, where k, n ∈ N. Then, we say that A defines a matrix transformation from λ into µ and we
denote it by writing A : λ → µ, if for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n},
the A-transform of x, is in µ; where

(Ax)n =
∑

k

ankxk (1)
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provided the series on the right side of (1) converges for each n ∈ N. For simplicity in notation,
here and in what follows, the summation without limits runs from 0 to ∞. By (λ : µ), we denote
the class of all matrices A such that A : λ → µ. Thus, A ∈ (λ : µ) if and only if Ax exists, i.e.
An ∈ λβ for all n ∈ N and belongs to µ for all x ∈ λ, where An denotes the sequence in the n-th
row of A.

If a normed sequence space λ contains a sequence (bn) with the following property that for
every x ∈ λ there is a unique sequence of scalars (αn) such that

lim
n→∞ ‖x− (α0b0 + α1b1 + · · ·+ αnbn)‖ = 0

then (bn) is called a Schauder basis for λ. The series
∑

k αkbk which has the sum x is then called
the expansion of x with respect to (bn) and written as x =

∑
k αkbk.

If λ is an FK-space, φ ⊂ λ and (ek) is a basis for λ then λ is said to have AK property,
where ek is a sequence whose only term in kth place is 1 the others are zero for each k ∈ N and
φ = span{ek}. If φ is dense in λ, then λ is called AD-space, thus AK implies AD.

Let (tk) be a nonnegative real sequence with t0 > 0 and Tn =
∑n

k=0 tk for all n ∈ N. Then,
the Nörlund mean with respect to the sequence t = (tk) is defined by the matrix N t = (at

nk) as
follows

at
nk =

{
tn−k

Tn
, 0 ≤ k ≤ n,

0 , k > n
(2)

for every k, n ∈ N. It is known that the Nörlund matrix N t is regular if and only if tn/Tn → 0,
as n → ∞ ([18], Theorem 16, p. 64), and is reduced in the case t = e = (1, 1, 1, . . .) to the
matrix C1 of arithmetic mean. Additionally, for tn = Ar−1

n for all n ∈ N, the method N t is
reduced to the Cesàro method Cr of order r > −1, where

Ar
n =

{
(r+1)(r+2)···(r+n)

n! , n = 1, 2, 3, . . . ,

1 , n = 0.

Let t0 = D0 = 1 and define Dn for n ∈ {1, 2, 3, . . .} by

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 0 · · · 0
t2 t1 1 0 · · · 0
t3 t2 t1 1 · · · 0
...

...
...

...
. . .

...
tn−1 tn−2 tn−3 tn−4 · · · 1
tn tn−1 tn−2 tn−3 · · · t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3)

Then, the inverse matrix U t = (ut
nk) of Nörlund matrix N t was defined by Mears in [27] for all

n ∈ N, as follows;

ut
nk =

{
(−1)n−kDn−kTk , 0 ≤ k ≤ n,

0 , k > n.
(4)

Additionally, the inverse of Nörlund matrix and some multiplication theorems for Nörlund mean
were studied by Mears [26, 27].

The domain λA of an infinite matrix A in a sequence space λ is defined by

λA = {x = (xk) ∈ ω : Ax ∈ λ}
which is a sequence space. The domain of Nörlund matrix N t in the classical sequence spaces
`∞ and `p were introduced by Wang [31], where 1 ≤ p < ∞. We should note here that as a new



78 TWMS J. PURE APPL. MATH., V.7, N.1, 2016

development, the reader may refer to [14] for studying on sequence spaces and related topics in
the sense of multiplicative calculus.

The rest of this paper is organized, as follows:
In section 2, we introduce the sequence spaces c0(N t) and c(N t), and give their some algebraic

and topological properties. Section 3 is devoted to the determination of the alpha-, beta- and
gamma-duals of the spaces c0(N t) and c(N t). In Section 4, the classes (c(N t) : `∞), (c(N t) : c)
and (c(N t) : c0) of matrix transformations are characterized and the characterizations of some
other classes are also derived as an application of those main results. In the final section of the
paper, we note the significance of the present results in the literature related with the domain
of certain triangle matrices on the spaces c0 and c, and record some further suggestions.

2. The sequence spaces c0(N t) and c(N t) of non-absolute type

We introduce the sequence spaces c0(N t) and c(N t) as the set of all sequences whose N t-
transforms are in the spaces of null and convergent sequences, respectively, that is

c0(N t) :=

{
x = (xk) ∈ ω : lim

n→∞
1
Tn

n∑

k=0

tn−kxk = 0

}
,

c(N t) :=

{
x = (xk) ∈ ω : ∃l ∈ C such that lim

n→∞
1
Tn

n∑

k=0

tn−kxk = l

}
.

We define the sequence y = (yk) by the N t-transform of a sequence x = (xk), that is,

yk = (N tx)k =
1
Tk

k∑

j=0

tk−jxj (5)

for all k ∈ N. Therefore, by applying U t to the sequence y defined by (5) we obtain that

xk = (U ty)k =
k∑

j=0

(−1)k−jDk−jTjyj (6)

for all k ∈ N. Throughout the text, we suppose that the terms of the sequences x = (xk) and
y = (yk) are connected with the relation (5).

Theorem 2.1. The sequence spaces c0(N t) and c(N t) are the linear spaces with the co-ordinatewise
addition and scalar multiplication which are the BK-spaces with the norm ‖x‖c0(Nt) = ‖x‖c(Nt) =
‖N tx‖∞.

Proof. The proof of the first part of the theorem is a routine verification and so, we omit the
detail.

Since c0 and c are the BK-spaces with respect to their usual sup-norm and N t is a triangle
matrix, Theorem 4.3.2 of Wilansky [32, p. 61] gives the fact that c0(N t) and c(N t) are the
BK-spaces. This completes the proof. ¤

Let λ denotes any of the spaces c0 or c. With the notation of (5), since the transformation
T : λ(N t) → λ defined by x 7→ y = Tx = N tx is a norm preserving linear bijection, we have the
following:

Corollary 2.2. The sequence space λ(N t) is linearly norm isomorphic to the space λ, where
λ ∈ {c0, c}.
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Theorem 2.3. Let N t be a non-Mercerian matrix, i.e., cNt 6= c. Then, the inclusions c0 ⊂
c0(N t) and c ⊂ c(N t) strictly hold.

Proof. Suppose that N t is a non-Mercerian matrix. To show the inclusion relation c0 ⊂ c0(N t)
holds we take any sequence y ∈ c0. Then, by using the regularity property of N t we can easily
find that N ty ∈ c0 which means that y ∈ c0(N t). That is to say that the inclusion c0 ⊂ c0(N t)
holds. In the similar way, it is trivial to see that the inclusion c ⊂ c(N t) also holds.

To prove the second part of the theorem, we should show that the sets c0(N t)−c0 and c(N t)−c

are not empty. For this, consider the sequence v = (vk) =
{
(−1)k

}
which does not belong to

both of the spaces c0 and c. Since

lim
k→∞

(C1v)k = lim
k→∞

1
k + 1

k∑

j=0

(−1)j = 0

and Cesàro mean C1 of order one is a special case of Nörlund mean, we have v ∈ c0(N t).
Additionally, since C1v ∈ c0 implies C1v ∈ c; we also have v ∈ c(N t). Hence, v ∈ [

c0(N t)− c0

]∩[
c(N t)− c

]
. That is to say that the inclusions c0 ⊂ c0(N t) and c ⊂ c(N t) strictly hold. ¤

It is known from Theorem 2.3 of Jarrah and Malkowsky [19] that the domain λT of an infinite
matrix T = (tnk) in a normed sequence space λ has a basis if and only if λ has a basis, if T is a
triangle. As a direct consequence of this fact, we have:

Corollary 2.4. Let αk = (N tx)k for all k ∈ N. Define the sequence
{
u(n)

}
=

{
u

(n)
k

}
k∈N

in the

space c0(N t) by

u
(n)
k =

{
(−1)n−kDn−kTk , 0 ≤ k ≤ n,

0 , k > n
(7)

for every fixed n ∈ N.

(a) The sequence
{
u(n)

}
n∈N is a basis for the space c0(N t) and any x ∈ c0(N t) has a unique

representation of the form x =
∑∞

k=0 αku
n
k .

(b) The set
{
e, u(n)

}
is a basis for the sequence space c(N t) and any x ∈ c(N t) has a unique

representation of the form x = le +
∑∞

k=0(αk − l)un
k , where l = limk→∞ αk.

3. The alpha-, beta- and gamma-duals of the spaces c0(N t) and c(N t)

In this section, the alpha-, beta- and gamma-duals of the spaces c0(N t) and c(N t) are deter-
mined.

Now, we start with the following lemma which is needed in proving our theorems. Here and
after, we denote the collection of all finite subsets of N by F .

Lemma 3.1. Let A = (ank) be an infinite matrix over the complex field. Then, the following
statements hold:

(a) A ∈ (c0 : `1) = (c : `1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

ank

∣∣∣∣∣ < ∞. (8)

(b) A ∈ (c : `∞) if and only if

sup
n∈N

∑

k

|ank| < ∞. (9)
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(c) A ∈ (c : c) if and only if (9) holds, and

∃ak ∈ C such that lim
n→∞ ank = ak for all k ∈ N, (10)

∃a ∈ C such that lim
n→∞

∑

k

ank = a. (11)

(d) A ∈ (c : c0) if and only if (9) holds, and

lim
n→∞ ank = 0 for all k ∈ N, (12)

lim
n→∞

∑

k

ank = 0. (13)

Theorem 3.2. The α-dual of the spaces c0(N t) and c(N t) is the set

dt
1 :=

{
a = ak ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣
∑

k∈K

(−1)n−kDn−kTkan

∣∣∣∣∣ < ∞
}

.

Proof. Let us define the matrix B = (bt
nk) with the aid of a = (ak) ∈ ω by

bt
nk =

{
(−1)n−kDn−kTkan , 0 ≤ k ≤ n

0 , k > n

for all k, n ∈ N. Since the relation (6) holds, we easily obtain that

anxn =
n∑

k=0

(−1)n−kDn−kTkanyk = (By)n (14)

for all n ∈ N. From (14), we conclude that ax = (anxn) ∈ `1 whenever x ∈ c0(N t) or ∈ c(N t) if
and only if By ∈ `1 whenever y ∈ c0 or ∈ c. Therefore, we derive by Part (a) of Lemma 3.1 that

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

(−1)n−kDn−kTkan

∣∣∣∣∣ < ∞

which leads to the desired result that {c0(N t)}α = {c(N t)}α = dt
1. ¤

Theorem 3.3. Define the set dt
2, as follows;

dt
2 :=



a = (ak) ∈ ω : sup

n∈N

∑

k

∣∣∣∣∣∣

n∑

j=k

(−1)j−kDj−kTkaj

∣∣∣∣∣∣
< ∞



 .

Then, {c0(N t)}β = {c(N t)}β = dt
2 ∩ cs.

Proof. Let x = (xk) be in c0(N t) or c(N t). Now, consider the equality
n∑

k=0

akxk =
n−1∑

k=0

n∑

j=k

(−1)j−kajDj−kTkyk + anTnyn = (Ey)n for all n ∈ N, (15)

where E = (enk) is defined by

enk =





∑n
j=k(−1)j−kDj−kTkaj , 0 ≤ k ≤ n− 1,

anTn , k = n,

0 , k > n

for all k, n ∈ N. Then, we observe by taking into the equality (15) that ax = (akxk) ∈ cs

whenever x = (xk) ∈ c(N t) if and only if Ey ∈ c whenever y = (yk) ∈ c. This is equivalent
to the statement that ”a = (ak) ∈ {c(N t)}β if and only if E ∈ (c : c)”. Therefore, we derive
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from (15) and Part (c) of Lemma 3.1 that the sequence (ak) satisfies the following conditions,
respectively,

sup
n∈N

∑

k

∣∣∣∣∣∣

n∑

j=k

(−1)j−kDj−kTkaj

∣∣∣∣∣∣
< ∞.

(ak) ∈ cs.

This shows that {c(N t)}β = dt
2 ∩ cs, as asserted. ¤

Theorem 3.4. The γ-dual of the spaces c0(N t) and c(N t) is the set dt
2.

Proof. This is similar to the proof of Theorem 3.3 with Part (b) of Lemma 3.1 instead of Part
(c) of Lemma 3.1. So, we omit the detail. ¤

4. Matrix transformations related to the sequence space c(N t)

In this section, we characterize some matrix classes from the spaces c(N t) into the classical
sequence spaces `∞, c and c0. Additionally, we characterize the class of matrix transformations
from a given sequence space µ to the space c(N t).

Throughout this section, we define the matrices F = (fnk) and G = (gnk) via multiplication
of the matrices A and N t by the products AN t and N tA, respectively, that is

fnk :=
∞∑

j=k

(−1)j−kDj−kTkanj and gnk :=
n∑

j=0

tn−j

Tn
ajk

for all k, n ∈ N.

Theorem 4.1. A = (ank) ∈ (c(N t) : `∞) if and only if

An ∈ {c(N t)}β for each n ∈ N, (16)

F ∈ (c : `∞). (17)

Proof. Suppose that A = (ank) ∈ (c(N t) : `∞) and x = (xk) ∈ c(N t). Consider the following
equality derived from the mth partial sum of the series

∑
k ankxk:

m∑

k=0

ankxk =
m∑

k=0

m∑

j=k

(−1)j−kDj−kanjTkyk (18)

for all m,n ∈ N. Since Ax exists and belongs to the space `∞, the necessity of the condition
(16) is obvious. Therefore, by letting m →∞ in the equality (18) one can see that

∑

k

ankxk =
∑

k

∞∑

j=k

(−1)j−kDj−kTkanjyk (19)

for all n ∈ N, i.e., Ax = Fy which gives that Fy ∈ `∞. That is to say that F ∈ (c : `∞).
Conversely, let us suppose that the conditions (16) and (17) hold, and take x = (xk) ∈ c(N t).

Then, (16) implies the existence of Ax and since the spaces c(N t) and c are isomorphic we have
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y ∈ c. Therefore, (19) gives with (9) with fnk instead of ank that

‖Ax‖∞ = sup
n∈N

∣∣∣∣∣
∑

k

ankxk

∣∣∣∣∣

≤ sup
n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

(−1)j−kDj−kTkanjyk

∣∣∣∣∣∣

≤ ‖y‖∞


sup

n∈N

∑

k

∣∣∣∣∣∣

∞∑

j=k

(−1)j−kDj−kTkanj

∣∣∣∣∣∣


 < ∞.

Hence, A ∈ (c(N t) : `∞).
This completes the proof. ¤

Theorem 4.2. A = (ank) ∈ (c(N t) : c) if and only if the condition (16) holds, and

F ∈ (c : c). (20)

Proof. Suppose that the conditions (16) and (20) hold, and take any x = (xk) ∈ c(N t). The
condition (16) implies the existence of A-transform of x. Therefore, one can derive by using the
hypothesis (9) with fnk instead of ank that

m∑

k=0

|ak| ≤ sup
n∈N

∑

k

|fnk| < ∞

for all m ∈ N. Hence, (ak) ∈ `1 which implies that (akyk) ∈ `1. Then, we derive by letting
n →∞ on (19) with (9) with fnk instead of ank that

lim
n→∞(Ax)n = lim

n→∞
∑

k

fnkyk =
∑

k

akyk. (21)

Since (akyk) ∈ `1, (21) gives that Ax ∈ c, that is, A ∈ (c(N t) : c).
Conversely, suppose that A = (ank) ∈ (c(N t) : c) and take x ∈ c(N t). Since the inclusion

relation c ⊂ `∞ holds, the necessity of the conditions (16) and (9) with fnk instead of ank follows
from Theorem 4.1.

Now, consider the convergent sequences u = (uk) =
{

u
(n)
k

}
k∈N

defined by (7) and x = (xk) =
{∑k

j=0 (−1)k−jDk−jTj

}
. Since A-transforms of u and x exist and belong to the space c by the

hypothesis, one can see that Au =
{∑∞

j=k(−1)j−kDj−kTkanj

}
n∈N

∈ c and Ax = (
∑

k fnk)n∈N ∈
c which shows the necessity of the conditions (9) and (11) with fnk instead of ank, respectively.
Hence, F ∈ (c : c).

This completes the proof. ¤

Corollary 4.3. A = (ank) ∈ (c(N t) : c0) if and only if (16) holds and (12) and (13) also hold
with fnk instead of ank, respectively.

Now, we can give the theorem characterizing the class of matrix transformations from a given
sequence space µ to the Nörlund space c(N t).

Theorem 4.4. Suppose that µ be any given sequence space. Then, A ∈ (µ : c(N t)) if and only
if G ∈ (µ : c).
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Proof. Let x = (xk) ∈ µ. Consider the following equality

n∑

j=0

tn−j

Tn

m∑

k=0

ajkxk =
m∑

k=0

gnkxk for all m,n ∈ N. (22)

Then, by letting m → ∞ in (22) one can see that {N t(Ax)}n = (Gx)n for all n ∈ N. Since
Ax ∈ c(N t), N t(Ax) = Gx ∈ c. This completes the proof. ¤

Let 0 < r < 1, q = (qk) be a sequence of non-negative reals with q0 > 0 and Qn =
∑n

k=0 qk

for all n ∈ N. Let us define the summation matrix S = (snk), the backward difference matrix
∆ = (dnk), the Riesz matrix Rq = (rq

nk) with respect to the sequence q = (qk), the matrix
Ar = (ar

nk) and the matrix Er = (er
nk) of Euler mean of order r by

snk :=
{

1 , 0 ≤ k ≤ n,

0 , k > n,
dnk :=

{
(−1)n−k , n− 1 ≤ k ≤ n,

0 , ≤ k < n− 1 or k > n,

rq
nk =

{
qk
Qn

, 0 ≤ k ≤ n,

0 , k > n,
ar

nk :=

{
1+rk

n+1 uk , 0 ≤ k ≤ n,

0 , k > n,

er
nk :=

{ (
n
k

)
(1− r)n−krk , 0 ≤ k ≤ n,

0 , k > n,

for all k, n ∈ N.
By combining Theorems 4.1, 4.2 and Corollary 4.3 with Theorem 4.4, the following results

are derived on the characterization of some matrix classes concerning with the space c(N t) of
Nörlund convergent sequences:

Corollary 4.5. Let A = (ank) be an infinite matrix over the complex field. Then, the following
statements hold:

(i) A ∈ (c(N t) : bs) if and only if (16) holds and (17) also holds with SF instead of F .
(ii) A ∈ (c(N t) : bv∞) if and only if (16) holds and (17) also holds with ∆F instead of F ;

where bv∞ denotes the space of all sequences x = (xk) such that (xk − xk−1) ∈ `∞, (cf.
Başar and Altay [8]).

(iii) A ∈ (c(N t) : X∞) if and only if (16) holds and (17) also holds with C1F instead of F ;

where X∞ denotes the space of all sequences x = (xk) such that
(

n∑
k=0

1
n+1xk

)
∈ `∞, (cf.

Ng and Lee [28]).
(iv) A ∈ (c(N t) : rq∞) if and only if (16) holds and (17) also holds with RqF instead of F ;

where rq∞ denotes the space of all sequences x = (xk) such that
(

n∑
k=0

qk
Qn

xk

)
∈ `∞, (cf.

Altay and Başar [1]).
(v) A ∈ (c(N t) : ar∞) if and only if (16) holds and (17) also holds with ArF instead of F ;

where ar∞ denotes the space of all sequences x = (xk) such that
(

n∑
k=0

1+rk

1+n xk

)
∈ `∞, (cf.

Aydın and Başar [6]).
(vi) A ∈ (c(N t) : er∞) if and only if (16) holds and (17) also holds with ErF instead of F ;

where er∞ denotes the space of all sequences x = (xk) such that
{

n∑
k=0

(
n
k

)
(1− r)n−krkxk

}
∈

`∞, (cf. Altay et al. [2]).
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Corollary 4.6. Let A = (ank) be an infinite matrix over the complex field. Then, the following
statements hold:

(i) A ∈ (c(N t) : cs) if and only if (16) holds and (20) also holds with SF instead of F .
(ii) A ∈ (c(N t) : c(∆)) if and only if (16) holds and (20) also holds with ∆F instead of F ;

where c(∆) denotes the space of all sequences x = (xk) such that (xk − xk−1) ∈ c, (cf.
Başar [9]).

(iii) A ∈ (c(N t) : c̃) if and only if (16) holds and (20) also holds with C1F instead of F ;

where c̃ denotes the space of all sequences x = (xk) such that
(

n∑
k=0

1
n+1xk

)
∈ c, (cf.

Şengönül and Başar [30]).
(iv) A ∈ (c(N t) : rq

c) if and only if (16) holds and (20) also holds with RqF instead of F ;

where rq
c denotes the space of all sequences x = (xk) such that

(
n∑

k=0

qk
Qn

xk

)
∈ c, (cf.

Altay and Başar [1]).
(v) A ∈ (c(N t) : ar

c) if and only if (16) holds and (20) also holds with ArF instead of F ;

where ar
c denotes the space of all sequences x = (xk) such that

(
n∑

k=0

1+rk

1+n xk

)
∈ c, (cf.

Aydın and Başar [5]).
(vi) A ∈ (c(N t) : er

c) if and only if (16) holds and (20) also holds with ErF instead of F ; where

er
c denotes the space of all sequences x = (xk) such that

{
n∑

k=0

(
n
k

)
(1− r)n−krkxk

}
∈ c,

(cf. Altay and Başar [4]).

Corollary 4.7. Let A = (ank) be an infinite matrix over the complex field. Then, the following
statements hold:

(i) A ∈ (c(N t) : cs0) if and only if the condition (16) holds and the conditions (11), (12)
and (13) also hold with (SF )nk instead of ank for all k, n ∈ N, where cs0 denotes the
space of all series converging to zero.

(ii) A ∈ (c(N t) : c0(∆)) if and only if the condition (16) holds and the conditions (11), (12)
and (13) also hold with (∆F )nk instead of ank for all k, n ∈ N; where c0(∆) denotes the
space of all sequences x = (xk) such that (xk − xk−1) ∈ c0, (cf. Başar [9]).

(iii) A ∈ (c(N t) : c̃0) if and only if the condition (16) holds and the conditions (11), (12) and
(13) also hold with (C1F )nk instead of ank for all k, n ∈ N; where c̃0 denotes the space

of all sequences x = (xk) such that
(

n∑
k=0

1
n+1xk

)
∈ c0, (cf. Şengönül and Başar [30]).

(iv) A ∈ (c(N t) : rq
0) if and only if the condition (16) holds and the conditions (11), (12) and

(13) also hold with (RqF )nk instead of ank for all k, n ∈ N; rq
0 denotes the space of all

sequences x = (xk) such that
(

n∑
k=0

qk
Qn

xk

)
∈ c0, (cf. Altay and Başar [1]).

(v) A ∈ (c(N t) : ar
0) if and only if the condition (16) holds and the conditions (11), (12) and

(13) also hold with (ArF )nk instead of ank for all k, n ∈ N; where ar
0 denotes the space

of all sequences x = (xk) such that
(

n∑
k=0

1+rk

1+n xk

)
∈ c0, (cf. Aydın and Başar [5]).

(vi) A ∈ (c(N t) : er
0) if and only if the condition (16) holds and the conditions (11), (12) and

(13) also hold with (ErF )nk instead of ank for all k, n ∈ N; where er
0 denotes the space

of all sequences x = (xk) such that
{

n∑
k=0

(
n
k

)
(1− r)n−krkxk

}
∈ c0, (cf. Altay and Başar

[4]).
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5. Conclusion

In 1978, the domain of Nörlund matrix N t in the classical sequence spaces `∞ and `p were
introduced by Wang [31], where 1 ≤ p < ∞. In 1978, the domain of Cesàro matrix C1 of
order one in the classical sequence spaces `∞ and `p were introduced by Ng and Lee [28], where
1 ≤ p < ∞. Following Ng and Lee [28], Şengönül and Başar [30] have studied the domain of
Cesàro matrix C1 of order one in the classical sequence spaces c0 and c. Following Şengönül and
Başar [30], to fill up the gap in the existing literature we have worked on the domain of Nörlund
matrix N t in the classical sequence spaces c0 and c.

Although the matrix transformations from the domain of certain triangles in the classical
sequence spaces into the classical sequence spaces have been characterized, the matrix transfor-
mations from the domain of Nörlund matrix in the spaces of null and convergent sequences into
some classical sequence spaces have not been characterized, until now. So, Theorems 4.1, 4.2,
4.4 and Corollary 4.3 have a special importance for this type studies, in future.

To review the concerning literature about the domain of the infinite matrix A in the sequence
spaces c0 and c, the following table may be useful:

A λ λA refer to:
Rt c0 and c rt

0 and rt
c [1]

C1 c0 and c c̃0 and c̃ [30]
Ar c0 and c ar

0 and ar
c [5]

Er c0 and c er
0 and er

c [4]
∆ c0 and c c0(∆) and c(∆) [20]
∆2 c0 and c c0(∆2) and c(∆2) [17]
u∆2 c0 and c c0(u;∆2) and c(u;∆2) [25]
∆m c0 and c c0(∆m) and c(∆m) [16, 15]

B(r, s) c0 and c ĉ0 and ĉ [21]
Rq c0 and c (N, q)0 and (N, q) [23]

∆(m) c0 and c c0(∆(m)) and c(∆(m)) [22]
G(u, v) c0 and c c0(u, v) and c(u, v) [3]

Λ c0 and c cλ
0 and cλ [24]

B(r, s, t) c0 and c B(c0) and B(c) [29]
Aλ c0 and c Aλ(c0) and Aλ(c) [7]

B(r̃, s̃) c0 and c c̃0 and c̃ [11]
Λ̃ c0 and c cλ

0(B̃) and cλ
0(B̃) [12]

F̂ c0 and c c0(F̂ ) and c(F̂ ) [10]

Table 1. The domains of some triangle matrices in the spaces c0 and c.
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[2] Altay, B., Başar, F., Mursaleen, M.,(2006), On the Euler sequence spaces which include the spaces `p and

`∞ I, Inform. Sci., 176(10), pp.1450–1462.



86 TWMS J. PURE APPL. MATH., V.7, N.1, 2016
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